
UNCLASSIFIED
IMI

AD. 296 931

ARMED SERVICES TECHNICAL INFORMAON AGENCY
ARLINGTON HALL STATION
ARLING 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-

fications or other data are used for any purpose

other than in connection with a definitely related

government procurement operation, the U. S.

Government thereby incurs no responsibility, nor any

obligation whatsoever; and the fact that the Govern-

ment may have formilated, furnished, or in any way

supplied the said drawings, specifications, or other

data is not to be regarded by implication or other-

wise as in any manner licensing the holder or any

other person or corporation, or conveying any rights

or permission to manufacture, use or sell any

patented invention that may in any way be related

thereto.



"'IAEMORANDUM
(-L,-M-3440-PR

"JANUARY 1963

'I

INCOHERENT SCATTERING OF

RADIO WAVES BY A PLASMA
D. F. DuBois and V. Gilinsky

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

SANTA MONICA • CALIFORNIA



MEMORANDUM

RM-3440-PR
JANUARY 1968

INCOHERENT SCATTERING OF
RADIO WAVES BY A PLASMA

D. F. DuBois and V. Gilinsky

This research is sponsored by the United States Air Force under Project RAND - Con-
tract No. AF 49(638) -700 - monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Technology, Hq USAF. Views or conclusions con-
tained in this Memorandum should not be interpreted as representing the official opinion
or policyof the United States Air Force. Permission to quote from or reproduce portions
of this emorandum must be obtained from The RAND Corporation.

1700 mAIN If - SANIA MONICA * CAI9OrNIA



-iii-

PREFACE

This report is part of RAND's continuing theoretical study of

the properties of high temperature plasmas. The results are of

interest for application to the determination of densities and

temperatures of high altitude plasmas.

Several installations are under construction to measure the

backscatter from powerful radar beams directed vertically upward,

and it is hoped that incoherent scattering of electromagnetic waves

from a laboratory plasma may be observed.

These experiments and associated theoretical studies will

lead to a better understanding of geophysics and electromagnetic

wave sciences.
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SUMMARY

The incoherent scattering of radio waves from a hot plasma is

computed using the diagrammatic techniques of quantum electrodynamics.

This method simplifies previously obtained results and permits ex-

tensions to include the effects of close collisions.
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I. ITEODUCTION

Several years ago W. E. Gordon(l) suggested that the weak but

measurable incoherent scattering of radio waves from electrons at

high altitudes would provide information about their density and

temperature out to a distance of several thousand kilometers. At

frequencies well above the electron plasma frequency 0= (4x 2n/M)1/2
p

the ionosphere is essentially transparent. Radio waves are then

scattered by charge fluctuations, and the scattered power is proportional

to the number of particles. If the particles did not interact among

themselves one would obtain for the scattering cross-section N times

the familiar individual Doppler-spread cross-section: (1)

2

(w,k) = N ro e •f( 1 +cos 220a)

where N is the number of scatterers, r = e2/m c2 is the classical

electron radius, w = (wb - 'a)/0p is the frequency shift, and

k = (kb - ka)/kD is the (vector) change in wave number in units of

theDeyewav nmbr =(Ig 
2  1/2

the Debye wave number kD = (x e/ kT) / . The cross-section for

backscatter is then atotal N N r 2 .

An experiment was performed by K. W. Bowles.(2 ) He observed

the incoherent scattering but found that the frequency spread of

the returned signal was much narrower than expected, and he proposed(3)

that the spread of the returned signal was characteristic of the ion

velocity and not the electron velocity. Subsequent theoretical in-

vestigations by Salpeter, ( 4 ) Dougherty and Farley, ( ) " and others(6-9)

have confirmed this conjecture and have presented a more detailed
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picture of the scattered radiation. The shape of the observed signal

is determined largely by collective effects.

We shall show here how the standard results are obtained in a

simple and transparent way from a diagrammatic theory of many-body

electromagnetic interactions.(10 ) This point of view enables us to

include the effects of (close) collisions, which have been neglected

by previous authors.
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II. FORMULATION

The description of individual electromagnetic processes in terms

of Feynman diagrams is at once the clearest, the most elegant, and

the most convenient for the purpose of calculation. We shall utilize

this method for the problem at hand: the incoherent scattering of

photons from a weakly-coupled, high-temperature electron-ion plasma

in thermodynamic equilibrium.

The total scattering rate is given by the familiar Golden Rule

rtotal , (i A b 2 2 be=a  ;ka )

eb,ea (2x) 2 1

(2.1)

(2x)353(P2-Pl.1 kb- f ka ) 2g8(E 2 -E1 + t w- " wa)

The subscripts 1 and 2 refer to the initial and final states of the

particles. The subscripts a and b refer to the initial and final

states of the radiation (ka is the initial wave number, ea is the

initial polarization). In Eq. (2.1) we sum over all final states and

average over all initial states. The correct average over the initial

particles states is obtained by using a suitable Gibbs factor,

P = eon e- 13(E 1 -N 1 ) (2.2)

where 0-1 = kT, p is the chemical potential, Nlis the number of parti-

cles in the state 1, and exp 00 is the normalizing factor fixed by

Trp1 a 1.
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We are, however, interested not in the total transition rate but

in the rate to all particle states with the final photon state fixed.

We denote this by r(k,w). From Eq. (2.1) one has

r~~)- 1X X Z 1  wb 12; kbo% IMI 1; k es
e..,e 2 1 7 a (2-3)%ee 2 1 8

(2.)3 53(p2 -p1  6k) 2xb(E2- El - w)

To obtain the amplitude M we simply draw all possible modes

for scattering a photon in state (ka ea) to a state (kb,eb). We

can make a number of good approximations. In the non-relativistic

limit the diagrams with single photon vertices can be neglected in

comparison with diagrams with a double photon vertex. Furthermore,

2we shall neglect terms of order a = m/M, the ratio of the electron

and ion masses, so it is not necessary to consider the interaction

of the radiation with the ions. In Fig. la we show the simplest

interaction of interest here. Other possible processes are shown

in Figs. 1-3. The braided line represents a screened Coulomb inter-

action.

The amplitude for any process is readily computed from the

corresponding diagram by use of the calculating rules presented in

Ref. 10. For example, the amplitude for the double photon-electron

vertex shown in Fig. la is given in Ref. 10 to be (Ihe 2/m) .a

The rate for this process is then

The amplitude may be infinite when the high frequency expansion
for that process is not valid. It is then necessary to use a modified
perturbation expansion. That is, one mmast first sun certain classes
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rd~~~ d3p2 d'p1  w/ 1 2 eb2

(k,.~ w)(- 2*3 1 (% 4g bp e12
(2g)es (2*)a

(2.4)

(2x- + k) 2* 8(lp 2
2 - Lp 2 + h W)

We shall deal only with unpolarized radiatior, so we sum and

average over the polarizations.

2 )2 ( . 1 (1 + cos20) (2.5)
eb -ea

where kb.ka = kbka cos Q. For backscattered radiation one readily

obtains the result given in Section 1 for non-interacting particles.

In the following section we shall discuss in detail the many-

body processes that produce the central characteristic resonance in

the scattered radiation.

of diagrams to remove the divergence at low frequency.
Notice also that the rules for the distribution functions are

somewhat different (and simpler) here since we want only the forward
process.
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III. STANDARD RESULTS BY THE DIAGRAM METHOD

The scattering due to the process shown in Fig. la produces a

rather broad line. This is a property of the one-electron pair final

state and so is also true of the process shown in Fig. lb. Since we

are interested here mainly in the sharp central line we shall disre-

gard these processes and concentrate on the process shown in Fig. lc

whose ion-pair final state produces a narrow line.

Direct scattering of radiation by an ion, analogous to the

electron process in Fig. la, also produces a narrow line, but is

less important than the process shown in Fig. 1c. There are two

reasons for this: (1) the direct photon-ion scattering has an extra

factor of a4 = (m/M) 2 , and (2) the matrix element for the indirect

process (Fig. lc) has a resonance at the low frequency acoustic mode.

The physical interpretation of Fig. lc is that the photon (wavy

line) is scattered by an electron (the bubble) in the screening cloud

which accompanies the ion (heavy line) and interacts with it by means

of a screened interaction (braided line). The amplitude for this

process is given by (amplitude for double photon-electron vertex) x

(amplitude for electron bubble) x (amplitude for screened Coulomb

interaction), or in the notation of Ref. 10,

X_ 2  Qe
(i (k,)) (- i ) = eb.ea(5.1)

C k2+Q(kw) c k2+ 4

where % = kD5/n. The function Q(k,w) represents the entire proper

polarization part. For the purposes of this section we want Q only
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0 0
to lowest order, Q - + , the sum of the electron and ion

bubbles.

The scattering rate at 0 = x is then given by

(2x) (2x3 % a 12 2k

() 5

2 .  1 2 22w 2p =2

= n r  e a (3.2)0 Ik 2  + o.!2  721( ;

If we take the values of Qe and Q in the random phase approximation

then it is easy to show that this is Just the result obtained by

previous authors (by rather less direct methods). The subscript a onra

refers to the acoustic mode. The analogous result can be obtained

near the plasma resonance by putting a - 1 in Eq. (3.2). It should

be noted that these results are accurate only near the respective

resonances. It is easy to write down a result which is valid over

the whole range of frequency but it is more complicated. In Fig. 4

we show several plots of the scattering cross-section in the random

2
phase approximation for several values of k . From Eqs. (6.12) and

(6.13) of Ref. 10 we have (with Z - w/Ak)

1lZ2 Z 1 t2 -12

(Z)-1-Ze J dt e" + ,.(/ 2 Z e (.3)
0

and (P a cz



-8-

In general, then, we can describe the result as follows. When

collective effects are unimportant, that is, when the wave number

k = kb - ka is large, the scattering is mainly through the mode shown

in Fig. la. As the wave number transfer k decreases collective effects

become increasingly important and processes of the type shown in

Figs. lb and lc dominate the scattering. The denominator in Eq. (3.2)

is the absolute square of the dielectric function of the medium.

The scattering is thus enhanced at the resonant frequences of the

medium. There are two such frequences: the high frequency plasma

mode and the low frequency acoustic mode. In the center of the

scattered line, where wb t wa' the scattering issharply enhanced by

the acoustic resonances on each side of wa. Since this mode is fairly

strongly damped, at least when the electron and ion temperatures are

equal, the two resonances run together and the peaks are just barely

distinguishable. At about u = a+ there are sharp resonances
-pp

corresponding to the electron plasma frequency.
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IV. THE EFFECT OF COLLISIONS

To obtain the lowest order effect of (close) collisions we must

compute r (kw) beyond the random phase approximation. In order to

correct the shape of the entire spectrum of the scattered radiation

it is necessary to have expressions for the collision corrections

(or, the conductivity) which are valid for the entire range of fre-

quencies, including very low frequencies. Such expressions are not

available in the literature and the only results which have

appeared(11 12 10 ) are valid only at high frequencies, that is,

when the frequency taken up by the system is greater than some

appropriate collision frequency. Nevertheless, one finds that for

certain cases the high-frequency formulas apply for a part of the

region of interest. They always apply sufficiently far from the

center of the line.

We are interested mainly in those processes which broaden the

final states in Fig. lc so that the infinitely sharp energy conserving

8-function in Eq. (3.2) becomes a finite resonance function

,hr1 p (4.1)

(, , z1 2  22 22 (2 a P2  -f a Pl, ) + r

The width rp is the transport collision frequency for a particle

of momentum p. It is the sum of all partial widths for the various

collision processes which alter the ion motion.

One of the authors (D. F. DuBois) has recently obtained such a
result for the conductivity of an electron-ion plasma. (To be
published.)
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We find, therefore, that the important processes are the ones

shown in Figs. 2a and 2b. The high-frequency rates are readily com-

puted from the results of Ref. 10.

To obtain a generally valid result one must in effect consider

all iterations of the scattering processes in Fig. 2. At low

frequencies the result of this iteration is a Boltzmann-like equation

whose solution yields Fp"

Other collision processes are shown in Fig. 3. The process

shown in Fig. 3a is unimportant because it lacks an ion resonance.

Note, however, that both processes are of the same order in the

interaction parameter X because there is a factor Xl1 for each closed

loop. The process shown in Fig. 3b vanishes in the limit of small

frequencies.

Strictly speaking, the following results are valid only at very

high temperatures, say above 106 OK, when the Born approximation is
valid. At lower temperatures one expects a change only in the argu-
ment of the logarithm corresponding to the change in the disfance of
minimum approach from the thermal deBroglie wave length to e /kT.
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V. DISCUSSION

A number of problems remain to be solved in order that collision

corrections be available for the scattering cross-section for a wide

range of parameters. The main problem is to obtain a formula for

the conductivity of a plasma which is correct for all frequencies.

If this were available it would be possible to extend our results

to the center of the line.

For application to scattering from the ionosphere it is important

to include the effect of a magnetic field. This depends, of course,

on the frequency of the radiation • The neglect of the magnetic

field is not a bad approximation 
at, say, 4oo Mc !

)

There are two interesting extensions of this problem. The first

is to permit different temperatures for the electrons and the

ions. ( 4'9 ) When the electrons are much hotter than the ions the

acoustic mode is very weakly damped and the two peaks in the central

line become quite sharp. The other extension(9 ) is to allow a

relative velocity between the two components. This can further

sharpen the resonance, with a very large increase in cross-section,

until at some critical velocity the entire system becomes unstable.

It would be interesting to find the effect of collisions on these

instabilities.
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Appendix

CONNECTION WITH FAMILIAR METHODS

In this appendix we present the problem in an alternate formula-

tion which makes closer contact with more familiar methods. We obtain

the well-known result that the scattering cross-section is propor-

tional to the imaginary part of a density correlation function.

The following account is self-contained, but brief. The in-

terested reader will find a more detailed discussion of electro-

magnetic interactions in plasmas in Ref. 10.

The part of the interaction Hamiltonian which is significant

for this problem is

Hi(t) = d3x n(x,t) A(x,t) • A(x,t) (A.1)
2mc

The electromagnetic field is described by the (time-dependent)

operator A(x,t) and n(x,t) is the electron density operator.

The amplitude for a transision 1 ' 2 is then proportional to

S dt ( 2; kb,eb I Hi(t) I 1; kae. )

2

--- 2-2 4T 2 e b  e ( 2 1 n(o,o)l 1) (A.2)
2 (2t )/2 " a

(2)363 (P2 " P1 + h kb  hka ) 2 6(E2 - E1 + h 0b a h Wa

One then inadiately obtains
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F(k,w) - r 2x 7 (. )1 (21n(o,o) l)

2 1 a

(21)3 5 3(p -p1 + 4i k) 2vB(E2 - El + t w) . (A.3)

Comparison of Eq. (A.3) with Eq. (4.12) of Ref. 10 shows that the

transition rate is proportional to the imaginary part of a density

correlation function 7T+(k,w). We can rewrite Eq. (A.3) in the form:

2 r 2 Im T C(kw
F(k,w) = ( + cos 0) . (A.4)

a l-e
2n ~ ~ whW

At high temperatures we can put 1 - e 4 W W.

The reader is urged to consult Ref. 10 for a precise definition

of 17"(k,w) and the details of the diagrammatic analysis of this

function. The open-diagram techniques lead directly to the results

of Section III.

In Fig. 5 we show the diagrammatic description of 7T, the proper

polarization part Q, and the screened interaction V. The correlation

function 77can be expressed in terms of Q,

4% Q Q 1-2 Q(A.5)
l+k-Q

2and, if we drop terms which vanish with a = gM and put in for Q the

expression obtained in the random phase approximatior we immediately

get the well-known result for r (k,w) which has been obtained by

previous authors. (4-9)

• + +

The function7T differs from the 7Tij of Ref. 10 only in that the
current densities Ji(o) and Jj(o) are replaced by charge densities.
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Photon scattering by a free electron (1a), by an
electron in the cloud of another electron (1b),
and by an electron In the cloud of an ion (1c).
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Fig. 2 b

Resonance scattering to a two ion-pair final
state (2a) and to a one ion-pair, one electron-
pair final state (2b).
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Fig. 3b

Other collision processes
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Fig. 4

Scattering line shape in the random phase
approximation for several values of k
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Fig. 5

Diagram~tic description of 7r, Q, and V.
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